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O F  A GAS U N D E R  S T E A D Y  I O N I Z I N G  R A D I A T I O N  
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The problem of the lowering of the e lec t r ic  s t rength of a gas under steady external  ionizing 
radiat ion is solved numerical ly .  The r ight-hand branches  of the Paschen curve  for helium, 
argon, and xenon are  calculated by the so-ca l led  ranging method using the s tandard R u n g e -  
Kutta p rog ram.  

The development of var ious  automatic control  sys tems for nuclear  power plants requi res  an es t imate  
of the working lifetime of gas -d i scha rge  devices exposed to dose ra tes  Py ~ 102-105 P / s e e  in the gamma 
radiation field of a r eac to r .  Under these conditions one of the cr i t ica l  p a r a m e t e r s  is the e lectr ic  s t rength.  

The book [1] l ists  a long bibliography of papers  devoted to the theoret ical  and experimental  studies of 
the effect of radiat ion on the change in the breakdown potential of a gap. Calculations by Rogowski and his 
coworkers  show that the relat ive lowering of the breakdown potential ~? = (U 0 - U , ) /U 0' where U 0 is the 
static breakdown potential neglecting space charge and U. is the breakdown potential in the presence  of a 
photoelectr ic  cathode emiss ion  cu r ren t  I0, is proport ional  to ~0"0. This resul t  is derived by applying p e r -  
turbation theory  and expanding the sys tem of equations in ser ies  in t e rms  of the smal l  pa r ame te r  AE = 
E(x) - E0, where E 0 is the initial homogeneous field for plane geometry  of the e lec t rodes  and E(x) is the 
field deformed by the space charge when the cur ren t  is I 0. Therefore  the range of applicability of the r e l a -  
tion ~ ~ v~0 is l imited by the condition 2xE << E0, and ~ << t'. 

In the ease under considerat ion ionizing radiation leads to a severe  deformation of the field and p e r -  
turbation theory is not applicable. Since there is no exact analytical solution for the motion of par t ic les  
in a se l f -cons is ten t  inhomogeneous field taking account of impact ionization, we calculate the dependence 
of the breakdown potential of a gap on the dose rate  Py numer ica l ly  by computer .  

In plane geometry  the sys tem of equations describing the drift  of par t ic les  in an inhomogeneous field 
taking account of impact  ionization and the creat ion of par t ic les  by a uniform external  source  has the form 

Z v = - - a ( E )  j~+Q;  T = ~  ] - - ]~  " ~(e) ' 

where  ] is the total cu r ren t  density, Je is the electron cur ren t  density, E is the e lec t r ic  field, v+ and v e 
are  the drif t  veloci t ies  of positive ions and electrons,  ~(E) is the coefficient of impact  ionization, and Q is 
the charge c rea ted  by the external source  per  unit volume of gas per  unit t ime; the origin of coordinates  
is at the anode. The p a r a m e t e r s  of the problem are j and Q. 

For  inert  gases  and an uncontaminated cathode secondary avalanches are  produced mainly by ions 
[2], and therefore  the boundary condition has the form 

~"+J je (0) = ], (2) ]~ ( d )  _ j _,~+, 

where Y+ is the coefficient of secondary ionization by ions. In o rder  to solve sys tem (1) it is neces sa ry  to 
specify explicity the form of the functions c~(E) and V+e(E). By interpolation of experimental  data for the 
drift  velocity of ions in inert  gases Kaganand Pere l '  [3] obtained empir ica l  express ions  of the form 
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v+(E)-=K+ l - - C T ,  p 

~W] ]' 7 ->D,  

where p is the p r e s s u r e  and K+, K~, C, C' ,  and D are  constants 
for a given gas.  The mobility of positive ions in inert  gases  
has been found analytically also [4]. We used Eqs.  (3) in our 
numerica l  solutions since they are in sa t is factory agreement  
with the experimental  data. I n  cont ras t  with v+ we can limit 
ourse lves  to the l inear approximation v e = K e (E/p) for the drift  
veloci ty of e lect rons  since v e ea t e r s  sys tem (1) as a small  c o r -  
rect ion of the o rder  v+(E)/v e, Ward [3] showed that the expres-  
sion 

e "77 = A p e x p  - - ~ [  -Z/)', 7 < W  (4) 

for  the coefficient a(E) is valid over a wide range of values of 
E /p  for inert  pases .  The numerica l  values of the constants in 
Eqs.  (3) and (4) are given by Ward [3]. Thus sys tem (1), (2) to- 
gether  with Eqs.  (3) and (4) completely determines  the problem. 
The determination of the breakdown potential U,  reduces  to the 

calculation of the v o l t - a m p e r e  charac te r i s t i c  U = U(j) for a given Q, w.here U .  is found f rom the condition 
dU/dj = 0 [5]. 

System (1) together with boundary condition (2) is a two-point boundary-value problem for a sys tem 
of ordinary differential equations (of the two var iables  E and Je only the boundary values for Je are  given 
at two points). One method for solving sys tem (1), (2) numerica l ly  is to specify another variable E(x = 0) 
at x = 0 in a re la t ively  a rb i t r a ry  way. Since now two functions are  specified at x = 0 the solution can be 
obtained by using any standard p rog ram.  We used the Runge -  Kutta p rog ram.  The choice of the function 
E(x = 0) is continued until the solution obtained for je(X = d) agrees  with the boundary value -/+ j/(1 + ~/+) 
to an a pr ior i  specified accuracy .  By integrating the distribution of the field over  the interval (0, d) the 
value of the potential corresponding to the given j and Q can be obtained. By specifying other values of j 
and Q and repeating the calculation ab initio the v o l t - a m p e r e  charac te r i s t i c  U = U(j) can be computed for 
var ious  values of Q. This ealculational p rocedure  as applied to gas -d i scha rge  problems was f i rs t  used by 
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W a r d  [6] to e s t i m a t e  the cathode fal l  in  a glow d i s c h a r g e .  F i g u r e  

1 shows the ca l cu l a t ed  v o l t -  a m p e r e  c h a r a c t e r i s t i c s  for  a r gon  with 
Q = (1/3) "10 -6 , d = 1, and p = 5 (curve  1), and for p = 10 ( cu rve  2) 

(in the text  and on the f i gu r e s  the un i t s  a r e :  V, cm,  m m  of Hg, K1, 
sec) .  The o rd ina t e  is  the po ten t i a l  r e l a t i v e  to the s ta t i c  b r e a k d o w n  
po ten t i a l  U d e t e r m i n e d  f r o m  the condi t ion  # = 7+ (exp ( s  0 d) - 1 )  = 1, 
where  s 0 is  the coef f i c ien t  of i m p a c t  i on i za t ion  in the f ield E 0. Tak ing  
account  of (4) the cond i t ion  ~ = 1 has the f o r m  

\~ ]--2 
Uo = pdB2 []n (PdA) -- ]n ]'l (i ~ 7+ ]~. (5) 

In all the calculations the coefficient of secondary ionization ~+ was taken as 0.02. The relative lowering of 
the breakdown potential ~ is determined from Fig. 1 as the difference 1 -  (U/U0)ma x. If the system (1), (2) 
is reduced to dimensionless form, dimensional arguments show that the breakdown potential U. depends on 
the parameter d 3 Q as well as on the dimensional combination pd; i.e., U, = U,(pd, d 3 Q). By determining 
the maximum of the volt-ampere characteristic for various choices of the parameters pd and d3Q the de- 
pendence of U. on pd can be constructed for various d3Q. Figure 2 shows the right-hand branch of the 
Paschen curve for argon [curve 1 neglects space charge, Eq. (5), curve 2 corresponds to d3Q = (1/3) "10-6; 
for curve 3 d3Q = 10-6]. Similar curves for xenon and helium are shown in Figs. 3 and 4 using the same 
notation as in Fig. 2. Calculations show that in the eases under consideration ~? can have values of tens of 
percent. The calculational method described permits the determination of ~ as a function of Q. If we neg- 
lect the contribution to Q from secondary processes in the sheath separating the gas gap from the sur- 
rounding spacethe relationbetween PTand Q has the form [7] 

P 7  = a Q [ a  -- 5.5 "1026(klo~/kl)], 

whe re  k 1 and k 2 a r e  the ave r age  l i n e a r  e n e r g y - t r a n s f e r  coef f ic ien t s  for  a i r  at s t a n d a r d  p r e s s u r e  and 
the f i l l ing  gas at  the p r e s s u r e  P, which  is  of i n t e r e s t  to us,  in  cm,  o~ is  the e n e r g y  of ion f o r m a t i o n  
in  the f i l l ing  gas ,  J / i o n ,  and Q is  in  k l / c m  3 - s e c .  F o r  example ,  for  E 7 ~ 1 MeV we f ind for  a rgon  a = 1.2 �9 
1012/p so that  c u r v e s  1 and 2 in  Fig .  1 c o r r e s p o n d  to PT = 8 "104 R / s e c  and P7  = 4 �9 104 R / s e c .  

The  m e c h a n i s m  for  l ower ing  the b r eakdow n  poten t ia l  is  exp la ined  by the i n c r e a s e  in the m u l t i p l i c a -  
t ion  fac to r  f r o m  the d e f o r m a t i o n  of the f ie ld  by the  space  c h a r g e .  F i g u r e  5 shows the f ie ld  d i s t r i b u t i o n  for  
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ignition cu r r en t s  j ,  co r responding  to va r ious  values  of Q [argon d = 1, p = 10; curve  4 gives the initial  
homogeneous field; cu rve  3 co r r e sponds  to daQ = (1/3) "10 -?, curve  2, to d 3 Q = (1/3) �9 10 -6, and curve  1, 
to d 3 Q = 10 -6]. For  such an inhomogenei ty  of the field a re la t ion  of the fo rm T/~ ~QQ, which can be der ived  
within the f r a m e w o r k  of pe r tu rba t ion  theory  when E(x) - E  0 << E 0 and ~7 << 1, is not appl icable.  However ,  
f r o m  Fig. 6 which shows ~7 as a function of dV~Q (argon pd = 10) it  is c l ea r  that the dependence is l inear  in 
the reg ion  of the values  of Q which a re  of i n t e r e s t  to us up to V - 22%, The genera l iza t ion  of the calculat ion 
to the case  T+ = T+ (E) is not difficult in pr inc ip le  and can be done as in [8]. 
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